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It is common to estimate the frequency separation between
peaks in a digitized frequency-domain spectrum by fitting an
appropriate function to the experimental spectrum using least-
squares procedures. In this paper, we assess from first principles
the precision associated with such measurements of frequency
separation. In addition to the frequency separation between the
peaks, other parameters involved in fitting the spectrum are the
peak widths, the lineshape functions (Gaussian, Lorentzian, etc.)
for the peaks, and the peak amplitudes. The precision also de-
pends on the signal-to-noise ratio and the spacing between adja-
cent data points in the digitized spectrum. It is assumed that the
residuals considered in the least-squares fitting procedure are the
differences between the intensities of corresponding digitized data
points in the experimental and fitted spectra. Under these condi-
tions, analytical expressions for the precision in peak separation
are derived for the following cases: (i) when the amplitudes of two
peaks are known and the two peaks have known equal widths; (ii)
when the ratio of the amplitudes of two peaks is known, and the
widths of the two peaks are known to be equal, but the actual value
of the peak width is not known. In each case, the situation with
two Gaussian peaks and the situation with two Lorentzian peaks
are considered. In all cases, the absolute precision P(n) in the
estimated frequency separation n between the two peaks is ap-
proximated by an equation of the type P(n) = F(n/A, @)SVK,
where A is the peak width, e is the ratio A,/A, of amplitudes of the
two peaks, S is the signal-to-noise ratio, and K is the density of
data points in the frequency-domain spectrum. The form of the
function F(n/A, «) depends on the type of lineshape (Gaussian or
Lorentzian), and depends on which of the parameters A;, A,, and
A are known independently of the fitting procedure. Attempts to
extend our first-principles approach to assess the precision in
least-squares estimates of frequency separation between peaks in
more complex situations than those discussed above generally lead
to analytical expressions that are formidably complicated. In such
cases, numerical approaches based on the theoretical framework
developed here may be employed to assess the precision in esti-
mating the frequency separation. © 1998 Academic Press
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1. INTRODUCTION

In many applications of NMR spectroscopy, and other spe
troscopic techniques, it is necessary to measure the separat
between two or more spectral lines (corresponding to peaks
the spectral curve), and an understanding of the precision
such measurements is of general interest and importance.
this paper, we focus on this question within the context o
NMR spectroscopy, although the results are generally applic
ble to other types of spectroscopy.

In modern NMR spectroscopy, the spectrum is generall
recorded as a digitized signal in the time domain, with subse
quent Fourier transformation giving a digitized spectrum in th
frequency domain (i.e., a plot of signal intensitgrsusfre-
quency). A curve with a single peak in the frequency-domai
spectrum is characterized by its lineshape function (usual
Gaussian or Lorentzian) and by various parameters, whic
include the peak centre frequency, the peak width, and the pe
amplitude; experimental factors such as the signal-to-nois
ratio and the separation in frequency between adjacent dic
tized data points are also important considerations.

In this paper, we assess the separation between the pe
centre frequencies dfvo peaksin a digitized frequency-do-
main spectrum, and we focus on the precision in estimating th
frequency separation. Clearly, the question of precision b
comes particularly important when the two peaks of interes
overlap substantially.

In general, any accurate determination of fundamental ir
formation from an NMR spectrum involves fitting an appro-
priate function (as justified on theoretical and/or empirica
grounds) to the measured (experimental) spectrum. We sh
refer to the fitted function as the “calculated spectrum.” Ir
general, the aim of fitting a calculated spectrum to the expe
imental spectrum is that it may be possible to assign physic
interpretations to the values of the fitted parameters that defil
the calculated spectrum. Commonly, the calculated spectrum
fitted to the experimental spectrum using least-squares proc
dures, in which the residuals are the differences between t
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intensity values of corresponding digitized data points in tHa each situation, we consider both the case with two Gaus
experimental and calculated spectra. Thus, it is common pré@A peaks and the case with two Lorentzian peaks. Clearl
tice to assume that errors arise only in the intensity of each dattuation (ii) finds widespread application in many aspect
point, with no error in the frequency of each data point. Inf NMR spectroscopy, in which well-defined splitting mech-
certain cases, some of the parameters used to define the @aisms give rise to known amplitude ratiostafo peaksn
culated spectrum may be known independently of the fittirgspectrum (with the widths of the two peaks equal, but th
procedure, although in general most (or all) of these parameteadue of peak width not knowa priori). Examples include
will be handled as variables in the fitting procedure. Th—8 J-coupling due to a single Spé‘lﬂucleus (1:1 ampli-
precision in estimating the value of a particular parameter, sutlile ratio), isotope effects on chemical shifts when tw
as frequency separation between two peaks, will depend on alifferent isotopes are present (amplitude ratio dependent
assumptions that can be made about the other parameters tth@relative abundances of the two isotopes), isotropic pea
define the calculated spectrum. In the case of the frequeriey chemically or crystallographically inequivalent nuclei
separation between two peaks, the other parameters that cf@mplitude ratio dependent on the relative numbers of th
acterize the calculated spectrum are the widths of the peaks, diféerent nuclei), dipolar interaction between two séin-
lineshape functions (Gaussian, Lorentzian, etc.) for the peaRgclei in single crystal NMR (1:1 amplitude ratio), quadru-
and the amplitudes of the peaks. The precision in fitting th®lar interaction for a spin-1 nucleus in a single crystal (1::
calculated spectrum to the experimental spectrum is also @plitude ratio), and so on.

pendent on factors such as the signal-to-noise ratio and the

frequency separation between adjacent data points in the dig- 2. THEORY

itized spectrum. The actual method adopted for the fitting

procedure may also influence the precision in the estimate of-or a spectral curve comprising two spectral lines, each of

the frequency Separa{ion between the peaks_ given Iineshape, the frequency-domain signal has the form
Within the context of NMR spectroscopy, a number of
studies {5 have sought to derive general mathematical de- f(v) = Aig(uy) + Ag(uy), [1]

scriptions of the precision in estimating the peak centre fre-
quency of asingle peakwhere relevant, passing reference i§nere the reduced frequencies andu, are defined by
made in the present paper to this previous work). However, the
question of the frequency separation between two peaks has A
essentially been ignored. Of the papers referenced above, only up=—(V—1[vo— n/2])
(2) touches upon this issue, and makes only the qualitative Ay
suggestion that “if the only source of error is attributable to A
random Gaussian noise, the error in measuring the separation u, = E(V —[Vo + n/2])
between two peaks will always be larger than the error in
measuring the position of one 'SOl".ited peqk. . for a suitable constamt. HereA, is the peak amplitude antl,
In the present paper, we obtdiom first principlesexpressions . . . .
h L . is the width at half the maximum height of the peak (for
for the precision in estimating the frequency separation betwefn : . .
two peaks in a digitized frequency-domain spectrum. It is impoy- 2), whilevy is thg mean of thg peak centre frequencies o
: ﬂ]e two peaks ang is the separation between the peak centr
f

tant to emphasize that we are interested in the case in which of?é/ﬂuencies (see Fig. 1). Thus curves of the form given by Ei

a single spectrum is available, rather than assessing the preci .
by measuring the frequency separation between the two peaki ] can be described by the 6 parametefg (A, Ay, Az, Vo,
. In the case of Gaussian lineshape

independent, repeated measurements of the same spectrum 1'(}l.e.,
for the same sample under the same conditions). Using the first-

principles approach developed here, we find that a straightforward ~ 9(W) = exp(—t)  and X = A¢ = 2,In2,
analytical description of precision is obtained only in certain

specific situations, as follows: whereas in the case of Lorentzian lineshape

(i) the amplitudes of the two peaks are known and the two
peaks have known equal widths

(ii) the ratio of the amplitudes of the two peaks is known,
and the widths of the two peaks are known to be equal, but the
actual value of the peak width is not known. (Subsequently, Wée shall consider just the cagg = A, = A. Note that for
consider separately the situation in which the ratio of thepectral curves of the form given in Eq. [1] with, = A, the
amplitudes of the two peaks is known to be unity, and tHmeshapes form a 2-parameter family classified B/,
situation in which the ratio of the amplitudes of the two peaks/A), whereA,/A, is the ratio of peak amplitudes.
is known to have some other value.) Our interest is in the peak separatignlt is appropriate to

1
g(u)=1+uz and A=A =2.



PRECISION IN ESTIMATING PEAK SEPARATION 25

We useK to denote the number of data points per pea

i) width, i.e.,
K - A
=3
kA, where d is the frequency-separation between adjacent da
points. (We assume that is a constant and known without
A error.) Because we are considering two peaks, care is needec
defining the signal-to-noise ratio. It is convenient to define th
A1 signal-to-noise rati® as
A
S— \yAlAz
v —1n/2 7 vy +1/2 o’

v

FIG. 1. Typical spectral curve containing two peaks, illustrating the peahereo denotes the root mean square spectral (vertical) nois
amplitudesA; andA,, peak widthsd; andA,, mean peak centre frequeney; In order to obtain a formula fdP(n), we use the general theory
and peak separation. of least-squares estimation. Consider a general spectral curve v

amplitudef (v; 04, . . . ,6,), whereb,, . . ., 6, are parameters. Then
least-squares estimation @f, . . ., 6, is equivalent to maximum
measure the precision in the estimate of the peak separationjg¥lihood estimation in non-linear normal regression. Applying
the absolute precision E) of n, defined by the general asymptotic theory of maximum likelihood estimatiol
(9, 10 shows that the standard eriey of the maximum likeli-
A hood estimaté), of 6, is given by
P(n) = p

n

o4 = o\(H™;,

where o; denotes the standard deviation of the least-squares . .
estimates) of 7. whereH is thek X k matrix with elements

We note in passing that an alternative way of measuring the

precision in estimating; is by therelative precision Rn),
defined by

HijZE

"ot (v of (Vi)

(2]

=96, 06,
R(n) = 1_ andvg, ..., Vv, are the observed digitized frequencies. Cet
T4 be thek X k matrix with elements

One advantage of the absolute precision over the relative
precision is thatP(n) tends to a finite limit asn tends to
infinity, whereasR(m) tends to infinity asy tends to infinity.

In order to derive formulae fd?(n), we make the following
assumptions:

(i) the noise occurs only in the amplitude (i.e., the ob-
served digitized frequencies are known exactly);

(i) the noise is independent of the signal and its standajg e
deviation does not depend on the frequency;

(iii) the type of lineshape (e.g., Gaussian or Lorentzian) is
known (although the values of the parameters are not neces-
sarily known);

(iv) the calculated spectrum is fitted to the experimental
spectrum by least squares; an

(v) the number of data points in the frequency range+{
nl2 — 2A, vy + n/2 + 2A) is large and these points are
evenly spaced in this interval.

ij_A

96, a0,

96, 90,

A
h(u) = f(vO + Au)

u=+(v—v)

A j af (v) af (v) i

_ r ah(u) ah(u) g
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is a reduced frequency using an appropriate constaffihen The important features of these formulae for the approximé
using the approximation tions Q(n) to P(nm) are that for all values of the known
parameters

G, (a) Q(m) tends to a non-zero finite limit ag tends to
infinity;
(b) Q(n) tends to 0 ag) tends to O;
as in @), we obtain (c) there is an upper bound @(7).

LK
Iy

An intuitive explanation of property (a) is that when the peak
oh = U\P (G, are very far apart, the error in estimating the separatjaa
] K AY i+ . . .
almost independent af. An explanation of property (b) is that
R R when the peaks are very close together the m&rig almost
Note that, in generally, . . . , 6, are dependent, leading to thesingular. Since is a continuous function, property (c) follows
important consequence that the precision of (s@y)hen from properties (a) and (b).
0, ..., 0, are known may be different from the precision of The fact thaiQ(n) tends to 0 as) tends to 0 does not mean
6, whené,, ..., 6, are unknown. thatP(n) has the same behaviour. Indeed, the approximatior
in Eq. [3] become poor ag tends to 0. This is not a great
3. RESULTS drawback of these approximations, since the region mear
0 is the region in which the normal equations for the leas
Applying the above general theory to spectral curves of thgares estimates of the unknown parameters are ill-con
form given in Eq. [1] and performing the necessary algebfgned (so that in this region calculation of these estimates k
with the assistance of the symbolic computation package Méhy Newton—Raphson type algorithm will encounter prob

ple yield approximations lems). The intuitive explanation of this ill-conditioning is that
if n = 0, then small changes ip, have almost the same effect
P(n) = Q(n) [3] as small changes in.

Some convenient upper bounds (which are not necessar
to the absolute precisioR(n). These approximate precisionsattained) orF(x, «) are given in Table 1.

Q(n) have the form Graphs ofF(x, a) for @ = 1 and 10 when onhA,/A; is
known are given in Fig. 2 for the Gaussian case and in Fig.
Q(n) = F(p, a)sV/R, [4] for the Lorentzian case.
where 4. DISCUSSION
A, In summary, in all cases considered, the preci§¢n) of

the frequency separation between two peaks is given by

p= g and «
approximation of the type

:Kl_

It is convenient to write Eq. [4] in the form =
P(n) = F(p, a)S|K, 5]

— (o o) S/K
Qm) = ywlp, @) S{K. wherep is the ration/A anda is the ratioA,/A;. The form of
the functionF depends on the type of lineshape (Gaussian c
Lorentzian), and depends on which of the parametgrsA,,
or A are known independently of the fitting procedure. The
(I) the amplitudes\,, A, of the two peaks are known andgeneral approximation in Eq. [5] fét(n) is directly analogous

Table 1 gives analytical expressions for the functiang, «)
in the situations

the two peaks have known equal widths to the approximation of the form
(I) the amplitudesA,, A, of the two peaks are known to be
equal, but the actual value of the amplitude is not knevgmiori, PeenrdV) = Foant ES\/R 6]

and the widthg\,, A, of the two peaks are known to be equal, but

the actual valué\ of the peak width is not knowa priori; iven in Ref. §) for the precisiorP,,{v) in determining the
(1) the ratio A,/A, of the amplitudes of the two peaks isd ' P . centré /. g
. ak centre frequenoy of a single peak in a spectrum. Thus,
known, and the widths of the two peaks are known to be equﬁ}?a s .
A . ese approximations to botR(n) and P...dV) increase
but the actual valua of the peak width is not knowa priori. . : . . ; . . .
linearly with the signal/noise ratio and increase linearly witt
In each situation, we consider both the case with two Gaussiaie square root of the density of data points in the digitize
peaks and the case with two Lorentzian peaks. spectrum. However, the functida(p, «) encountered in the
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TABLE 1
Approximate Precision Q(n) = F(n/A, A,/A;)SVK of Peak Separation = for the Three Situations I, I1, 111 Defined in the Text
Lineshape w(x, @) = F(x, a)? lim, . .F(X, «) Upper bound
I. A;, Ay, andA known
Gaussian (2w In 2)1/2w 1.445M 1.4450 k—0.893
& K + 261 — ) ' ' '
. T X2(96 + 12x% + x*)(128+ 12x* + x5
Lorent - 1.253 1.618N«k®
orentzian 2 4+ X264k + 2] + 48x — 2]x% + 12K + 100) Vi Vi
I A, = A
Gaussian (W In 2>”2 21+ 9*A - - 261+ Hx° + {1 - 9 1.021 1.071 ak = 2.76%
2 2L+ 92— 461+ o x> + &x*
. 7 X%(256+ 1602 + 32¢* + x°)
L t — 0.886 0.960 ak = 2.290°
orentzian 2 2(1024+ 112¢ + 328 + X®)
Ill. A /A; known
Gaussian <7"' In 2>1/2 Ao+ AP + AX + AXE 1.4450M k —d
2 (k + 241 — x2)(By + B,x? + B, X%
Ao =2(1 — &)(k + 282 Bo = (k + 28
A, = =28k + 284+ kE— 28 B,= —4é(k + 28)
A, =2kE(1 + ké+ &) B, = k&
As= —k(x—2H&
2 2 6 8 10 12
Lorentzian X*(Co + Cox® + X + CoX® + CaxX® + CuoX™ + CioX™) 1.2530 1.568N\k?

s
2 (Do + DpX2 + Dyx* + kX®)(Ey + EpxZ + E,x* + Esx® + k2X?)

Co = 8192k + 2)? Do = 64(k +2)

C,= 20480k — V(k +2) D,=48k —2)
C,=7168k — D)(k+2) D,=12

Co = 64(k + 2)(25k — 14) E, = 256(k + 2)2

Cg = 16(21x* + 28k — 4) E, = 2562 — 4)
Cio= 4k(7k + 8) E,=323k*+ 2k — 2)

Crp= K2 Eg = 16k(k + 2)

Note.In all cases, the linewidths of the two peaks are egigl= A, = A. Notethatk = a + o~ * and& = exp(—x?/2).
2 Not necessarily attained.

bx = 1.374=> F(x, 1) = 1.021.

°x = 1.633=> F(x, 1) = 0.886.

9 No useful bound known.

expression in Eg. [5] foP(n) reduces to a constaft..,.in the present work that no generalizations can be made regardi
the expression in Eq. [6] fdP..{V). (Note that the value of the conditions for maximum precision, and any particular cas
F cenredepends on the type of lineshape.) must be considered on its own merits by applying the ful
When the two peaks are well separatpds large, whereas equations developed here. In all cases tends towards zero,
at the other extreme in which the peaks merge into one, ttee approximate precisio@(n) approaches zero. However,
value ofp becomes zero. As can be seen from Table 1, for larf@s does not mean that the true precis®m) has the same
p, the approximate precisio(m) is almost constant, as isbehaviour. As approaches zero, the approximationd¢#))
physically reasonable given that, when the peak separatiorbisQ(n) become poor. This is not a great disadvantage, sinc
large compared with the peak width (i.e., no significant overlaghen p is small, least-squares estimates cannot be calculat
of the peaks), the ability to fit the two peaks should not depeneliably.
on the actual value of the peak separation. However, it is foundin principle, it is possible to extend the work reported here
that the maximum of the approximate precisi@fn) is not assess the precision in least-squares estimates of the freque
necessarily equal to the limit &@(n) for large p. Indeed, in separation between peaks in situations that are more complex tt
several of the situations considered (see Section 3), the makbse considered here. For example, we have carried out preli
mum approximate precision is achieved in the regiop ef 1 inary research to derive analytical expressions for precision
to p = 2 (see Figs. 2a, 3a, and 3b). However, it is clear fropeak separation for the following situations:
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FIG. 2. F(x, «) for the Gaussian case with only the rafig/A; = « known: (a)a = 1, (b) « = 10.

(i) two peaks, as in Section 3 above, but with unequal (i) two peaks with known amplitude ratia,/A; and known

widths A; # A)) ratio A,/A; of widths, but withA,/A; not necessarily equal to 1
(ii) three peaks (either Gaussian or Lorentzian), for whicfnecall that Section 3 considered the casagi; = 1),
the Fourier-transformed signal has the form (i) three peaks with known amplitude ratids,/A, and

As/A,, a known common widtlh = A; = A, = A3, and equal
A A separations), = n; = n/2 between the central peak and the
f(v) = Alg(Al(V - Vo)) + Azg(AZ(V —[vo— ”02])) two outer peaks.

A In spite of the fact that this complexity restricts the generali
+ Ag,g(A (Vv—[vo+ 7]3])), zation of the present work, the situations considered in Sectic
3 3 nevertheless occur widely in different types of spectroscop
?rticularly for the situation with two peaks of known ampli-
ude ratio (A,/A;) and equal (but unknown) widths. These
results are generally applicable to different types of spectrc
However, the analytical expressions obtained¥6n) in these scopic data, although our original motivation in the preser
cases are formidably complicated, and unlikely to be of ammase was to consider the precision in peak separation in Four
real practical usefulness. This is true even for the apparentitgnsform NMR spectra. The physical situation covered b

with m, and n5 denoting the separations between the cent
peak and the two outer peaks.

straightforward situations comprising situations Il and 11l of Subsection 3.2 is indeed often encour
& b
=
I g
d
(=
il
=2 A E)
) 8 o
Ry « < 1
! = 4
9
< =
0 5 10 15 0 5 10 15
T T

FIG. 3. F(X, a) for the Lorentzian case with only the rath,/A;, = « known: (a)a = 1, (b) « = 10.
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tered in different aspects of liquid state and solid state NMiRagnetic field instability or inhomogeneity, or temperature

spectroscopy—in many cases, two peaks are generatedirtstability or inhomogeneity. Further, it often happens tha

some splitting phenomenon such that the widths of the twatosely spaced or overlapping peaks are strongly couple

peaks are equal and their amplitudes are governed by a whdhding to distortion of the lineshape. Such factors, which at

defined ratio (controlled by the physics underlying the partictot considered in the present analysis, may lead to displac

ular situation). Clearly, however, the case of “accidental” ovements and/or broadening of the peaks in the spectrum, and

lap of peaks would need to be considered with more caution,@erticular may lead to the experimental lineshape being no

(depending on the physical origin of the two peaks) there ne€éussian or non-Lorentzian. Clearly, there are intrinsic diffi

not necessarily be well-defined and known relationships baulties in achieving a good fit between experimental and ca

tween the amplitudes and/or the widths of the two peaks. culated spectra for such cases in which the experiment
There is an important distinction between general formuldieeshape may be poorly defined.

of the form given in Eq. [5] (and analogous formulae in the
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